A Fuzzy-stochastic Approach for Binary Linear Programming under Uncertainties
نویسندگان
چکیده
This paper presents an innovative Fuzzy-Stochastic Approach (FSA) to solve Binary Linear Programming (BLP) problems under uncertainties. An Interval-coefficient Fuzzy Binary Linear Programming (IFBLP) model is applied here to reflect two different types of uncertainty in a BLP problem. In the proposed IFBLP model the interval coefficient is used to reflect parameter uncertainty, and the fuzzy goal & fuzzy constraints are used to represent model structure uncertainty. The proposed FSA would de-fuzzify the fuzzy constraints in an IFBLP model by considering its fuzzy goal; and then derive two linear BLPs with extreme crisp-coefficients from the IFBLP model, which here are called as a best optimum BLP and a worst optimum BLP. The results of the two-extreme linear BLPs are used to bound the outcome distribution of the IFBLP model. The proposed FSA is applied into a long-term traffic noise control planning to present its applicability.
منابع مشابه
Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general tran...
متن کاملAmelioration of Verdegay̕s approach for fuzzy linear programs with stochastic parameters
This article examines a new approach which solves Linear Programming (LP) problems with stochastic parameters as a generalized model of the fuzzy mathematical model analyzed by Verdegay. An expectation model is provided for solving the problem. A multi-parametric programming is applied to access to a solution with different desired degrees as well as problem constraints. Additionally, we presen...
متن کاملA robust multi-objective global supplier selection model under currency fluctuation and price discount
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss dec...
متن کاملA two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems
In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management fac...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کامل